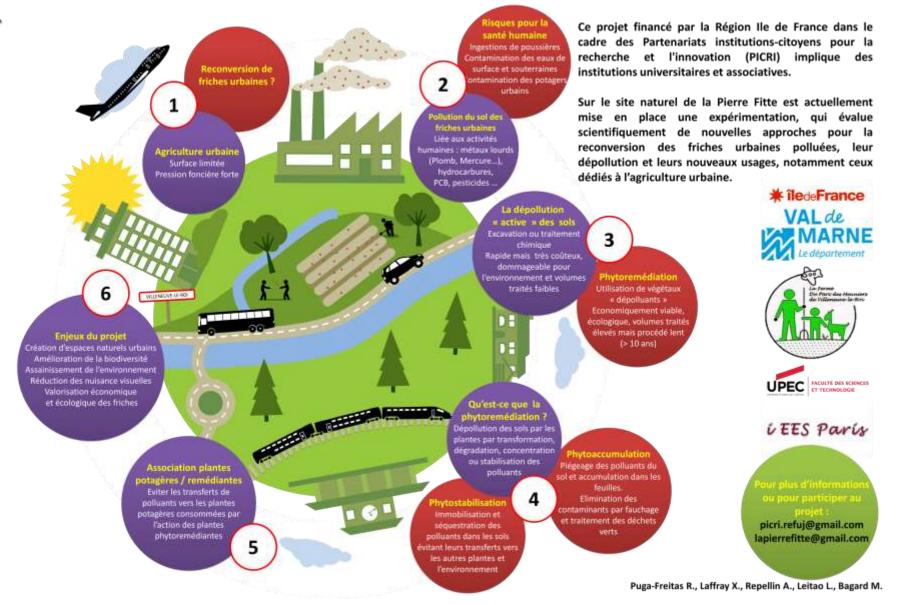
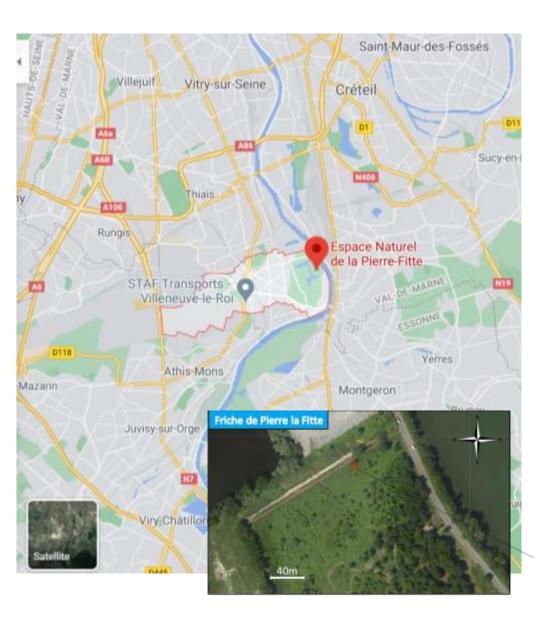


Contamination des sols urbains : cas de la Pierre-Fitte à Villeneuve-le-roi (94)


- → PICRI REFUJ (2014-2017) Reconversion d'une Friche Urbaine en Jardin
- → OBSOLU (2019-2024) Observatoire Urbain d'étude de sols remaniés issus d'une ancienne

friche urbaine impactée par une pollution multi-métalliques (Porteurs: Clarisse Balland-


Bolou-Bi, Leesu et Juliette Leymarie, iEES)

ReFUJ: Reconversion d'une Friche Urbaine en Jardin

Cas de la Pierre-Fitte à Villeneuve-le-Roi (94)

Caractérisation initiale de la parcelle (Laffray et al., 2021 Environmental Science and Pollution Research)

Parameters	Minimum	Maximum	Mean	Standard deviation	Variation coefficient (%)	Norme (NF U44-041)
pН	7.27	7.49	7.41	0.08	1.14	
pH-KCl	6.97	7.18	7.11	0.08	1.08	
Clay (%)	7.1	12.1	9.75	1.9	19.45	
Silt (%)	0.5	0.9	0.73	0.15	20.53	
Sand (%)	87	92.3	89.5	2.02	2.25	
Org Matter (%)	5.71	7.44	6.6	0.6	9.13	
CaCO ₃ (%)	24.09	29.82	26.68	2.32	8.68	
CEC (meq/100g)	8.57	11.8	9.81	1.29	13.15	
As (mg/Kg)	10.3	43.3	24.9	11.98	48.1	
Cd (mg/Kg)	5.3	37.9	19.4	12.45	64.16	2
Cu (mg/Kg)	43.6	631.4	265.2	215.08	81.09	100
Ni (mg/Kg)	28.6	117.4	67.4	34.24	50.75	50
Pb (mg/Kg)	661.8	1696.9	1128.4	432.38	38.32	100
Zn (mg/Kg)	585.7	1373.9	1050.7	344.57	32.8	300

OBSOLU (2019-2024)

→ Observatoire Urbain d'étude de sols remaniés issus d'une ancienne friche urbaine impactée par une pollution multi-métalliques (Porteurs: Clarisse Balland-Bolou-Bi, Leesu et Juliette Leymarie, iEES)

L'objectif général est d'évaluer l'impact de différents modes de gestion de parcelles végétalisées sur la répartition des ETM entre les compartiments sol, eau et flore.

Un premier volet étudiera la mobilité des polluants dans le cas de végétation spontanée ou d'espèces végétales mises en place et gérées avec ou sans fauchage.

Un deuxième volet abordera l'effet de la mycorhization des plantes sur les transferts des ETM vers les différents compartiments. L'ensemble de ces données sera confronté au suivi physico-chimique des compartiments sol et eau.

OBSOLU (2019-2024)

→ Observatoire Urbain d'étude de sols remaniés issus d'une ancienne friche urbaine impactée par une pollution multi-métalliques (Porteurs: Clarisse Balland-Bolou-Bi, Leesu et Juliette Leymarie, iEES)

- + une meilleure tolérance aux éléments toxiques
- +augmentation de la mobilité des ETM

Mise en place de l'expérimentation

Avril 2020 Mai

Préparation de l'enclos et des sols par le CD 94

Mai 2020

Mise en place de l'arrosage, composteurs et semis

Septembre 2020

Première campagne de prélèvements

Juin 2021

Inventaire floristique, prélèvements de végétaux

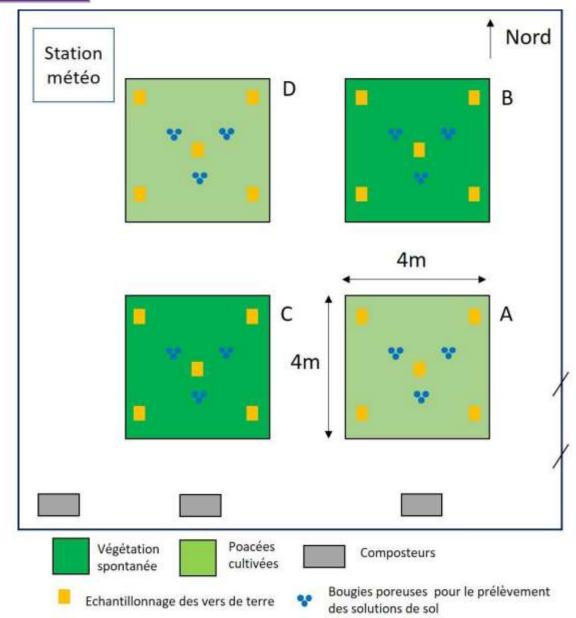


Figure 1 : Schéma des parcelles de l'observatoire OBSOLU du site de la Pierre-Fitte (Villeneuve-le-Roi, 94) équipées (année 2020).

→ Observatoire Urbain d'étude de sols remaniés issus d'une ancienne friche urbaine impactée par une pollution multi-métalliques (Porteurs: Clarisse Balland-Bolou-Bi, Leesu et Juliette Leymarie, iEES)

Chaque parcelle est partagée en 3 zones

Poacées semées :

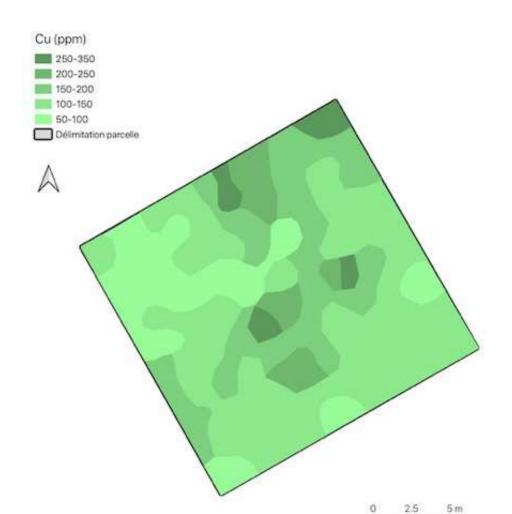
- Festuca arundinacea
- Lolium perenne
- Agrostis capillaris

→ Analyse des sols

Cartographies des teneurs en ETM, en C élémentaire et pH des parcelles

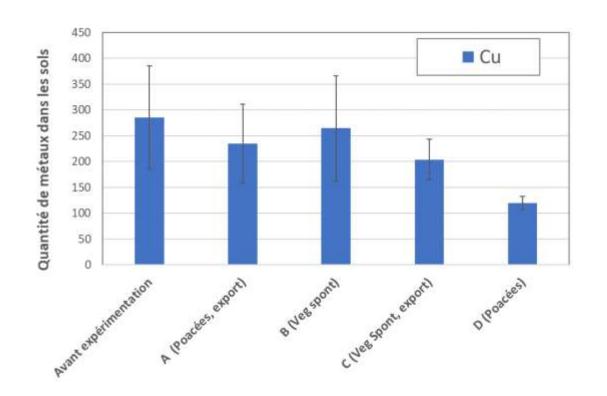
→ Les parcelles ont été instrumentalisées avec des bougies poreuses

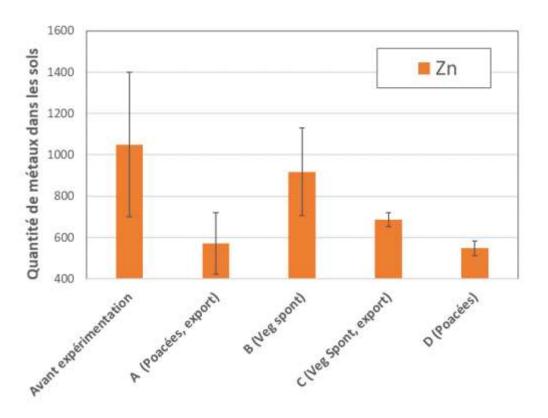
→ Analyses des **solutions de sols** (pH, ETM, acides organiques)


- → Suivis de la **biodiversité végétale** et des populations de vers de terre
- → Mesure du taux de mycorhization, activités enzymatiques.

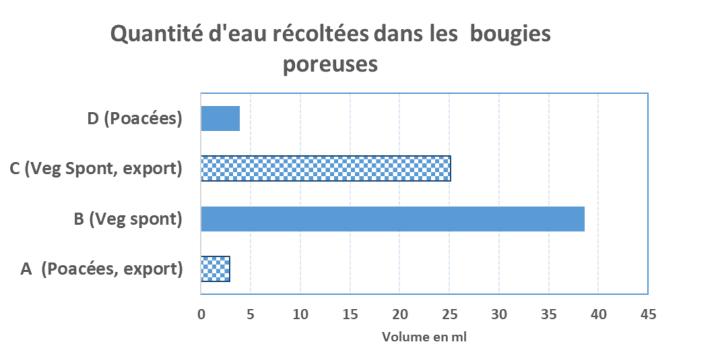
- → Analyses des teneurs en ETM dans les différents composts
 - 1/ Végétation spontanée
 - 2/ Poacées: Festuca arundinacea, Lolium perenne, Agrostis capillaris
 - 3/ Allées (Gazon commercial)

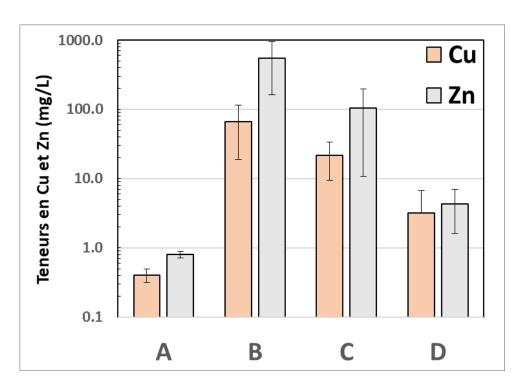
Premiers résultats: Etat initial (2020)


Répartition spatiale du cuivre dans le sol de la zone d'étude à l'état initial



Répartition spatiale du zinc dans le sol de la zone d'étude à l'état initial




Après 3 ans d'expérimentation, y a-t-il un effet sur la quantité totale de métaux dans les sols?

Premiers résultats: Transfert des métaux dans les eaux du sol

- Effet du fauchage: plus d'eau dans les sols lorsqu'on laisse la fauche sur place → plus de nutriments aussi
- Effet de la végétation: Poacées jouent bien leur rôle de « plantes phytostabilisatrices »

Premiers résultats : Biodiversité

- → Populations spontanées ou semées bien implantées Plus de 40 espèces identifiées
- → Suivi annuel des espèces exemple:

Nom scientifique	Nom vernaculaire		Occurrence N1	N2	N3	
Tanacetum vulgare	tanaisie	Astéracées	Χ		7	7
Solidago gigantea	solidage géant	Astéracées	X	5		3
Solidago canadensis	solidage du Canada	Astéracées	X	20	15	20
Rubus caesus	ronce	Astéracées	X	10	10	10
Rubus fruticosus	ronce	Astéracées	X	2	2	
Agrostis gigantea	agrostide géante	Poacées	X	15	20	20
Artemisia vulgaris	armoise commune	Astéracées	X	7	10	3
Glechoma hederacea	lierre terrestre	Lamiacées	X	2		
Cerastium sp.	ceraiste	Caryophyllacées	X	1	2	1
Festuca arundinacea	fétuque élévée	Poacées	X	2	7	3
Eupatorium cannabinum	eupatoire chanvrine	Astéracées	X		2	
Urtica dioica	ortie dioïque	Urticacées	X	10	1	5
Agrostis capillaris	agrostide géante	Poacées	X	10	7	15
Silene latifolia	compagnon blanc	Caryophyllacées	X			3
Veronica sp.	véronique	Plantaginacées	X		1	2
Bromus sterilis	brome stérile	Poacées	X	5	7	5
Sol nu			X	5	5	1
Mousse			X	5	5	5

Premiers résultats : Biodiversité

Evolution de l'indice de Shannon (H') pour la diversité spécifique floristique

Parcelles	sept-20	avr-21	août-21
A (Poacées semées exportées)	0.93	1.08	0.98
B (Spontanées NON exportées)	1.62	2.66	1.94
C (Spontanées exportées)	2.03	2.32	1.98
D (Poacées semées NON exportées)	1.17	1.42	1.35
Partie NON POLLUEE		1.5 - 2.8	

En 2021

→ Biodiversité sur les parcelles polluées comparable à la zone non polluée de la Pierre-Fitte

→ Pas d'effet visible du mode de gestion

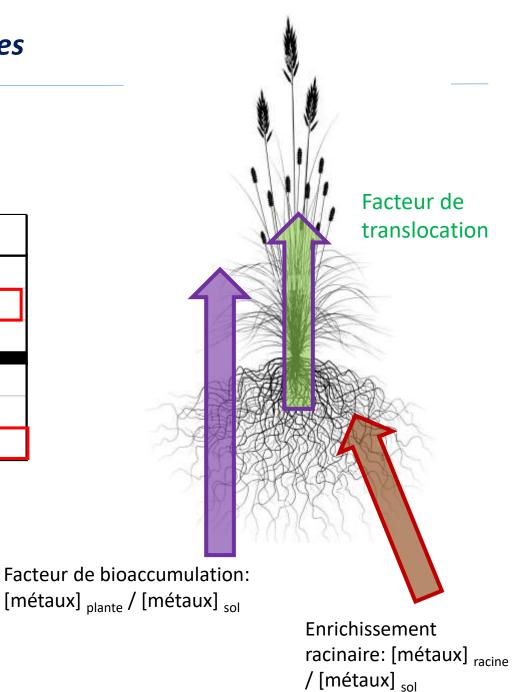
En 2023?

→ Analyses en cours

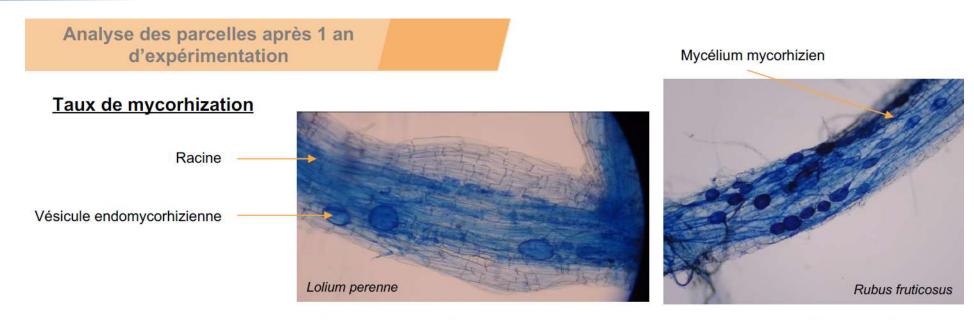
Premiers résultats : Biodiversité

Juillet 2023, Dépôt des données de Biodiversité dans la base de donnée GBIF, https://www.gbif.org

GBIF—the Global Biodiversity Information Facility—is an international network and data infrastructure funded by the world's governments and aimed at providing anyone, anywhere, open access to data about all types of life on Earth.


eventID	occurrenceID	basisOfReco individual	Co organismQuant	organismQuantityT	occurrenceS	scientificName	commonNar	kingdom	phylum	Sub-section	Sub-section2	class	order	family	genus	synonym	ScientificNaı infraspecifi	ctaxonRank	recordedBy	recordedByID	type/treatment	ownerInstitu
2023-05-30-A1	2023-05-30-A1:1	HumanObse	1 0.5	percentage_cover	present	Solidago canadensis	Solidage du (F	Plantae	Tracheophyt	Spermatophyta	Angiospermae	Campanulids	Asterales	Asteraceae	Solidago	Solidago car	L. NA	species	Juliette Leyr	https://orcid.org/0000-0003-	04 sown and exported mowed	iEES-Paris
2023-05-30-A1	2023-05-30-A1:2	HumanObse NA	1	percentage_cover	present	Veronica chamaedry	Véronique p	Plantae	Tracheophyt	Spermatophyta	Angiospermae	Lamiids	Lamiales	Plantaginac	e Veronica	Veronica cho	L. NA	species	Juliette Leyr	https://orcid.org/0000-0003-	04 sown and exported mowed	iEES-Paris
2023-05-30-A1	2023-05-30-A1:3	HumanObse NA	2	percentage_cover	present	Cerastium sp.	NA F	Plantae	Tracheophyt	Spermatophyta	Angiospermae	Superasterids	Caryophylla	Caryophylla	Cerastium	Cerastium s	L. NA	genus	Juliette Leyr	https://orcid.org/0000-0003-	04 sown and exported mowed	iEES-Paris
2023-05-30-A1	2023-05-30-A1:4	HumanObse NA	45	percentage_cover	present	Lolium arundinaceur	Fétuque faux	Plantae	Tracheophyt	Spermatophyta	Angiospermae	Commelinids	Poales	Poaceae	Lolium	Festuca aror	L. NA	species	Juliette Leyr	https://orcid.org/0000-0003-	04 sown and exported mowed	iEES-Paris
2023-05-30-A1	2023-05-30-A1:5	HumanObse NA	14	percentage_cover	present	Agrostis gigantea	Agrostide gé F	Plantae	Tracheophyt	Spermatophyta	Angiospermae	Commelinids	Poales	Poaceae	Agrostis	Agrostis gige	Roth NA	species	Juliette Leyr	https://orcid.org/0000-0003-	04 sown and exported mowed	iEES-Paris
2023-05-30-A1	2023-05-30-A1:6	HumanObse NA	5	percentage_cover	present	Dactylis glomerata	Dactyle agglo	Plantae	Tracheophyt	Spermatophyta	Angiospermae	Commelinids	Poales	Poaceae	Dactylis	Dactylis glor	L. NA	species	Juliette Leyr	https://orcid.org/0000-0003-	04 sown and exported mowed	iEES-Paris
2023-05-30-A1	2023-05-30-A1:7	HumanObse NA	1	percentage_cover	present	Medicago lupulina	Luzerne lupu f	Plantae	Tracheophyt	Spermatophyta	Angiospermae	Fabids	Fabales	Fabaceae	Medicago	Medicago lu	L. NA	species	Juliette Leyr	https://orcid.org/0000-0003-	04 sown and exported mowed	iEES-Paris
2023-05-30-A1	2023-05-30-A1:8	HumanObse NA	13	percentage_cover	present	Rubus caesius	Ronce bleuâ F	Plantae	Tracheophyt	Spermatophyta	Angiospermae	Fabids	Rosales	Rosaceae	Rubus	Rubus caesiu	L. NA	species	Juliette Leyi	https://orcid.org/0000-0003-	04 sown and exported mowed	iEES-Paris
2023-05-30-A1	2023-05-30-A1:9	HumanObse NA	8	percentage_cover	present	Carex hirta	Laîche hériss F	Plantae	Tracheophyt	Spermatophyta	Angiospermae	Commelinids	Poales	Cyperaceae	Carex	Carex hirta	L. NA	species	Juliette Leyr	https://orcid.org/0000-0003-	04 sown and exported mowed	iEES-Paris

Premiers résultats: Transfert des métaux dans les plantes


Potentiel phytostabilisant des espèces végétales

		Cu	Zn
40	Facteur de bioaccumulation	0.31	0.44
ci colidago	Facteur de translocation	0.27	1.04
C. 2011, 2.	Enrichissement racinaire	0.47	0.43
	Facteur de bioaccumulation	0.6	0.8
A: Lolium perenne	Facteur de translocation	0.17	0.6
b., be,	Enrichissement racinaire	1.02	1

- → Cu et Zn mobile (transloquées vers les partie aérienne)
- → Effet phytostabilisant des Poacées
- → Phytoextraction du Zn par le solidage?

Premiers résultats: Mycorhization

Photographies de racines mycorhizées de *Lolium perenne*, Poacée de la parcelle A et de *Rubus fruticosus*, espèce spontanée de la parcelle C, colorées au bleu Trypan, observées en microscopie photonique (x40)

Type de végétation	Fréquence de mycorhization		Plantes spontanées 2,5x plus mycorhizées que les
Spontanées	Spontanées 83%		Poacées semées
Poacées	33 %	7	

2023 : analyses en cours sur des espèces spécifiques, tests de quantification

Conclusions

- Présence de Cu, Ni, Zn et Pb sur l'ensemble de la zone polluée
- Très bonnes résistances des plantes à cette pollution → toutes les espèces végétales semblent mycorhizées
- Potentiel phytostabilisant confirmé pour les Poacées
- Phytostabilisation non adaptée pour le Zn qui est très mobile, forte présence dans les composts (observation similaire dans la littérature)
- Pas encore d'effet visible du mode de gestion sur la biodiversité du site ni sur la mobilité des métaux du sol vers les plantes

Pourquoi intégrer OBSERVIL?

- Observatoire avec un partenariat de 5 ans renouvelables avec le conseil départemental du 94
- Suivi de la phytostabilisation sur du moyen terme
- pour initier des projets communs en Ile de France sur les problématiques de gestion de pollution des sols en milieu urbains en complément de ce qui fait à OBSERVIL
 - → en vue de labéliser le site
 - → Créer des bases de données sol + plantes
 - → intégrer OPUR